Potential Anticonvulsants. III. The Condensation of Isatin with Cyclic Ketones

F. D. Popp, R. Parson and B. E. Donigan

Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110
Received April 14, 1980

Isatin has been condensed with a series of cyclic ketones to give 3-substituted-3-hydroxyoxindoles as potential anticonvulsant agents.

J. Heterocyclic Chem., 17, 1329 (1980).

In Part I (1) and Part II (2) of this series we reported that the oxindole 1 exhibited anticonvulsant activity in the maximal electroshock seizure test (MES) (3) with an ED₅₀ of 102 mg./kg. and a protective index (PI) of about 4 and that oxindole 2 had an ED₅₀ of 40 mg./kg. and a PI of 12 in that same test. Oxindole 2 also was active at 300 mg./kg. in the pentylenetetrazol seizure threshold test (Met) (3). We also reported (2) that 3 was active at 300 mg./kg. in the MES test.

In view of the fact that some activity was found in 3 it

Table I

Reaction of Isatin with Cyclic Ketones

					<u>Calcd.</u> Analysis Found	
Ketone Used	M.p. (a) °C	Yield, %	Formula	С	H	N
cyclopentanone	173-174	40	$C_{13}H_{13}NO_{3}$	$\frac{67.52}{67.37}$	5.67 5.48	_
1-methyl-4-piperidone	137-138	64	$C_{14}H_{16}N_2O_3$ (b)	$\frac{64.60}{63.01}$	$\frac{6.20}{5.53}$	$\frac{10.76}{9.86}$
4-methylcyclohexanone	196-197	56	C ₁₅ H ₁₇ NO ₃	69.48	6.61	5.40
2-methylcyclohexanone	199-201 (c)	50	C ₁₅ H ₁₇ NO ₃	69.15 69.48	6.60 6.61	5.29 —
4-i-propylcyclohexanone	187-188	61	C17H21NO3	69.71 71.05	6.52 7.37	
4-t-butylcyclohexanone	205-207	59	C18H23NO3	70.84 71.73	7.40 7.69	4.65
1-tetralone	221-222 (d)	88	C ₁₈ H ₁₅ NO ₃	71.80 73.70	7.71 5.16	4.71
1,3,4,6,7,11b-hexahydro-9,10-dimethoxybenzo[a]quino-	178-179	68	$C_{23}H_{24}N_2O_5$	73.71 67.63	5.13 5.92	6.86
lizin-2-one 3-ethyl-1,3,4,6,7,11b-hexahydro-9,10-dimethoxybenzo-	153-154	55	C ₂₅ H ₂₈ N ₂ O ₅	67.21 68.79	5.78 6.47	6.68
[a]quinolizin-2-one 5-androsten-3β-ol-17-one	261-262	81	C ₂₇ H ₃₃ NO ₄	68.20 74.45	6.55 7.64	6.25
,	254-255	60	C ₂₇ H ₃₅ NO ₄	74.27 74.11	7.71 8.06	3.44 3.20
5α-androstan-3β-ol-17-one			2. 00	74.29	8.18	3.35
5-androsten-3 eta -ol-17-one acetate	218-219	41	C ₂₉ H ₃₅ NO ₅	$\frac{72.93}{72.18}$	$\frac{7.39}{7.40}$	$\frac{2.93}{2.94}$
androstanolone benzoate	175	30	C ₃₄ H ₃₉ NO ₅	$\frac{75.39}{75.34}$	$\frac{7.26}{7.40}$	$\frac{2.59}{2.35}$
5α-cholestan-3-one	192-194 (e)	82	$C_{as}H_{s1}NO_{a}$	$\frac{78.75}{78.64}$	$\frac{9.63}{9.51}$	-

⁽a) Recrystallized from ethanol, m.p. uncorrected, spectral data consistent with structure. (b) Compound is difficult to purify, see text. (c) Reported

⁽⁴⁾ m.p. 178°. (d) Reported (5) m.p. 197-198°. (e) Reported (6) m.p. 191°.

was decided to investigate the use of other cyclic ketones. Thus isatin was condensed with a series of cyclic ketones, including steroids, in the presence of diethylamine to give the compounds of the type 3 shown in Table I. All of the compounds exhibited spectra consistent with the structure.

With two exceptions all of the compounds in Table I were inactive at 300 mg./kg. in both the MES and Met screens (3). The products derived from isatin and cyclopentanone (4) and 2-methylcyclohexanone (5), however, were both more active than 3. Thus, 4 was active at 100 mg./kg. in the MES screen and 300 mg./kg. in the Met screen with some toxicity at 300 mg./kg., and 5 was active at 100 mg./kg. in the MES screen and 600 mg./kg. in the Met screen. Further screening of 5 indicated an ED₅₀ of 171 and a PI of 8 in the MES screen (3).

The condensation of isatin with 1-methyl-4-piperidone gave a product (6) that was difficult to purify and of very low stability. The mass spectrum of the crude product showed a low intensity molecular ion (m/e 260), a more intense M*-H₂O (m/e 242), but very intense peaks (m/e 147 and 113) corresponding to starting material. Attempts to dehydrate the crude product 6 with hydrochloric acid in acetic acid, a procedure that readily leads to dehydration of 1, 2, and 3, gave near quantitative yields of isatin.

EXPERIMENTAL

Condensation of Isatin with Cyclic Ketones.

Isatin (0.01 mole) and the cyclic ketone (0.015-0.03 mole) in 30-50 ml. of absolute ethanol containing 3-4 drops of diethylamine were heated at reflux on the steam bath for 30-60 minutes. After standing for several days at room temperature, the products (Table I) were collected by filtration.

Attempted Dehydration of 6.

A mixture of 0.01 mole of crude 6, 0.5 ml. of concentrated hydrochloric acid, and 17 ml. of acetic acid was heated on the steam bath for 15-30 minutes. Addition of ethanol and standing at room temperature gave a near quantitative yield of isatin, identical in all ways with an authentic sample.

REFERENCES AND NOTES

- (1) F. D. Popp and B. D. Donigan, J. Pharm. Sci., 68, 519 (1979).
- (2) F. D. Popp, R. Parson, and B. E. Donigan, ibid., in press.
 (3) Anticonvulsant screenings were carried out through the ADD pro-
- gram of the NINCDS, NIH. The standard screening protocol of that group was followed. We thank them for making this service available.
- (4) S. Pietra and G. Tacconi, Farmaco (Pavia), Ed. Sci., 16, 492 (1961).
- (5) F. A. Al-Tai, A. M. El-Abbady, and A. S. Al-Tai, J. Chem. U. A. R., 10, 339 (1967).
- (6) G. I. Zhungietu and L. M. Reulets, Khim. Geterotsikl. Soedin., 1226 (1974).